PUBHLTH 5015

Public Health Data Analytics I Fall 2025

Instructor Grzegorz A. Rempala, Ph.D. D.Sc.

(degrees details: BGSU 1996, Statistics; Warsaw Tech University 2007, Ap-

plied Prob.)

Email: grempala@cph.osu.edu

Office: 380E Cunz Hall

Office Hours

Tue 3:30-4:30pm (link: https://osu.zoom.us/j/91744847582?pwd= (zoom)

chR849AlGAKaXIiopE0BBBsbS64wea.1&from=addon passwd: 557958

Feedback Grading: You can generally expect feedback within 7 days.

Response Time E-mail: I will reply to e-mails (sent via Carmen) within 24 hours on school

days.

Lectures Tu/Thr 11:15am-12:30pm, 180 Pomerane Hall

Course Webpage Carmen: http://carmen.osu.edu

Login with OSU internet username (name.#) and password, then go to the

course name.

Course Notes Posted on the course website prior to or soon after the lectures as appropri-

Textbook No primary textbook. We will rely on student's lecture notes.

Supplemental

Text

An Introduction to Statistical Learning with Applications in R by James, G.,

Witten, D., Hastie, T., Tibshirani, R., Taylor, J. & Grosse, R. Published by

Springer (2023); available free online at

https://www.statlearning.com/

Required Software

R Software; available free online at

http://www.r-project.org/

Prerequisites PUBHBIO 2210, STAT 3202, 3470, or 5301; or permission of instructor.

Course

Description

This course provides a broad introduction to the principles and applications of data analytics in public health. Students will explore foundational concepts and methods used to collect, analyze, and interpret data in order to address current and emerging issues in population health and healthcare delivery. Particular emphasis will be placed on understanding how data-driven approaches inform the design of studies, the evaluation of interventions, and the development of evidence-based policies. The course also covers analytical frameworks and basic tools used to critically assess data and support decision-making in diverse public health settings.

α	T3	1
Class	Forma	T.

Mode of delivery: This course meets 100% in class and in person.

Credit hours and work expectations: This is a 3-credit-hour course. According to Ohio State policy (go.osu.edu/credithours), students should expect around 3 hours per week of time spent on direct instruction (e.g., [examples here]) in addition to 6 hours of homework/active learning activities (e.g., homework, coding, and project assignments) to receive an average grade of C. Attendance and participation requirements: Students are expected to attend lectures and participate in all classroom activities.

Course Tech Requirements

Basic computer programming and web-browsing skills

Tech Equipment

Computer: Current Mac (Mac OSX) or PC (Windows 10+) with high-speed internet connection

Homework

There will be approximately 4–5 homework assignments throughout the semester. Late homework will **NOT** be accepted without a reasonable cause and advance notice. Students are permitted (indeed encouraged) to work together on homework, but submitted assignments must be written independently.

Exam

There will be two take home 24-hours long midterm exams. Second exam is based on the students' group project.

Project

The project in this course will account for a significant portion (20%) of the grade and will showcase students understanding of methods in advanced epidemic analysis. Each student will be required to write a short project report and be prepared to give a 20-minute in-class presentation towards the end of the term.

Grading

Final class grade will be determined as follows:

50% Homework 40% Midterm exams 10% Project presentation

Grading Scale: 90-100 A, 78-89 B, 66-77 C, 50-65 D. ("+" for exceeding mid-range, no "-")

Learning Objectives

Upon successful completion of the course, students will have the knowledge, comprehension and/or skills to be able to use and apply commonly used statistical methods for analyzing univariate and multivariate epidemic data. Particularly, the students will be able to

- Identify commonly used methods for quantitative analysis of public health data.
- Evaluate the strengths and limitations of specific analytical methods in relation to a given dataset and scientific hypothesis.
- Demonstrate a broad understanding of terminology and the basic mechanics of data analytics methods in public health.
- Describe best practices for sharing data and software to ensure transparency and facilitate reproducibility of research results.

• Recognize the social, political, ethical, and scientific considerations that shape data analytics in public health.

Graduate Student Competencies (OSU CPH)

- (Foundational Knowledge 3) Explain the role of quantitative and qualitative methods and sciences in describing and assessing a population's health.
- (Foundational Knowledge 6) Explain the critical importance of evidence in advancing public health knowledge.
- (Foundational Competency 2) Select quantitative and qualitative data collection methods appropriate for a given public health context.
- (Foundational Competency 3) Analyze quantitative and qualitative data using biostatistics, informatics, computer-based programming and software, as appropriate.
- (Foundational Competency 22) Apply systems thinking tools to visually represent a public health issue in a format other than standard narrative.

Undergraduate Student Competencies (OSU CPH)

- (Foundational Domain 2) The basic concepts, methods and tools of public health data collection, use and analysis and why evidence-based approaches are an essential part of public health practice.
- (Foundational Competency 1) Communicate public health information, in both oral and written forms, through a variety of media and to diverse audiences.
- (Foundational Competency 2) Locate, use, evaluate and synthesize public health information.

Disability Statement

Any student who feels s/he may need an accommodation based on the impact of a disability should contact me privately to discuss specific needs. Please contact the Office for Disability Services at 614-292-3307 (TDD: 614-292-0901) in room 098 Baker Hall, 113 W. 12th Ave., to coordinate reasonable accommodations for students with documented disabilities. http://www.slds.osu.edu/.

Student Support Students experiencing personal problems or situational crises during the semester are encouraged to contact OSU Counseling and Consultation Services (292-5766; http://www.ccs.ohio-state.edu) for assistance, support and advocacy. This service is free to students and is confidential.

Academic Integrity It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct http://studentlife.osu.edu/csc/.

AI Usage

There has been a significant increase in the popularity and availability of a variety of generative artificial intelligence (AI) tools, including ChatGPT, Sudowrite and others. These tools will help shape the future of work, research and technology but when used in the wrong way, they can stand in conflict with academic integrity at Ohio State.

All students have important obligations under the Code of Student Conduct to complete all academic and scholarly activities with fairness and honesty. Our professional students also have the responsibility to uphold the professional and ethical standards found in their respective academic honor codes.

To maintain a culture of integrity and respect, the generative AI tools should not be used in the completion of course assignments unless an instructor specifically authorizes their use.

Grievances and Solving Problems

A student who encounters a problem related to his/her educational program has a variety of avenues available to seek resolution. According to University Policies, if you have a problem with this class, you should seek to resolve the grievance concerning a grade or academic practice by speaking first with the instructor or professor. Then, if necessary, you may take your case to the department chairperson. Specific procedures are outlined in Faculty Rule 3335-8-23, the CPH Graduate Student Handbook, and the CPH Undergraduate Student Handbook. Grievances against graduate, research, and teaching assistants should be submitted first to the supervising instructor, then to the chairperson of the assistant's department.

Course Summary

Week	Dates	Topic	Comments
1	8/26-8/31	Intro	
2	9/1-9/7	Statistical Learning 1	
3	9/8-9/14	Statistical Learning 2	HMWK1
4	9/15-9/21	ODEs	
5	9/22-9/28	Intro to Bayesian Methods	HMWK2
6	9/29-10/5	Topological Data Analysis 1	
7	10/6-10/12	Topological Data Analysis 2	HMWK3
8	10/13-10/19	Survival Analysis & Epidemiological Models	
9	10/20-10/26	Network Models for Infectious Disease	Midterm
10	10/27 - 11/2	Stat Learning 3 (Trees, RF, Boosting)	
11	11/3-11/9	Deep Learning and AI Applications in Health	HMWK4
12	11/10-11/16	Causal Inference in Public Health	
13	11/17-11/23	Reproducibility & Open Science Practices	Project Proposal Due
14	11/24-11/30	Student Presentations / Case Studies	
15	12/1-12/7	Course Review & Final Exam / Project Due	Final

Alignment of Competencies with Assessments

Graduate Competencies	Homework	Midterm	Final Data	Final
		\mathbf{Test}	${f Project}$	Presentation
(FK 3) Explain the role of quantitative and qual-	X	X		
itative methods and sciences in describing and				
assessing a population's health				
(FK 6) Explain the critical importance of evi-		X	X	
dence in advancing public health knowledge				
(FC 2) Select quantitative and qualitative data	X		X	
collection methods appropriate for a given pub-				
lic health context				
(FC 3) Analyze quantitative and qualitative	X		X	
data using biostatistics, informatics, computer-				
based programming and software				
(FC 22) Apply systems thinking tools to visually			X	X
represent a public health issue in a format other				
than standard narrative				

Undergraduate Competencies	Homework	Midterm	Final Data	Final
		Test	${f Project}$	Presentation
(FD 2) The basic concepts, methods and tools of	X	X		
public health data collection, use and analysis,				
and why evidence-based approaches are essential				
(FC 1) Communicate public health information,				X
in both oral and written forms, through a variety				
of media and to diverse audiences				
(FC 2) Locate, use, evaluate and synthesize pub-	X		X	
lic health information				